Both in vitro and in vivo animal and
human studies demonstrate age-related
declines in both humeral and cellular
components of the immune system (9).
In old (23 months) mice, the normal
functioning of follicular dendritic cells
appears to be strongly impaired when
compared with young mice (10):
according to researchers, “Antigen
transport was defective and only a
small fraction of antigen transport sites
developed.” (10). Furthermore, follicu-
lar dendritic cells were ultrastructural-
ly atrophic, retained little antigen, and
produced no iccosomes. By interfering
with normal follicular dendritic cell
function, age likely has the same effect
on transmissible spongiform encepha-
lopathies as has been observed due to
dedifferentiation of follicular dendritic
cells (8). Senescence of the immune
system function could interfere with
transmissible spongiform encephalo-
pathy pathogenesis in other ways as
well, such as impairing migrating
intestinal dendritic cells or comple-
ment pathways involved in complex-
ing PrPR to follicular dendritic cells.

This hypothesis could be readily
tested by intracerebral versus periph-
eral PrPRes challenge of young versus
old animals. Because the intracerebral
challenge bypasses the immune sys-
tem portal, old, peripherally chal-
lenged animals should show a dispro-
portionate reduction in disease risk if
immune system senescence is impor-
tant in regulating pathogenesis.
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SARS Epidemiology
Modeling

To the Editor: To assess the effec-
tiveness of intervention measures dur-
ing the recent severe acute respiratory
syndrome (SARS) pandemic, Zhou
and Yan (1) used Richards model, a
logistic-type model, to fit the cumula-
tive number of SARS cases reported
daily in Singapore, Hong Kong, and
Beijing. The key to using mathemati-

LETTERS

cal models for SARS epidemiology is
understanding the models (2). In the
Richards model (1), the function F(S)
in the model was described as measur-
ing “‘the effectiveness of intervention
measures.” The parameters in F(S),
namely, the maximum cases load K
and the exponent of deviation a,
depict the actual progression of the
epidemic as described by the reported
data. In other words, the parameter
estimates are used to quantify end
results of the intervention measures
implemented during the outbreaks.
Simply put, the all-important question
of “what if?”” was not answered by
their result. To gauge the effectiveness
of intervention measures, one should
consider a more complicated model
with variable maximum case load and
growth rate (r) that highlights the
time-varying nature of an epidemic
and its dependence on the interven-
tion measures implemented during the
epidemic.

Predicting the trend of an epidem-
ic from limited data during early
stages of the epidemic is often futile
and sometimes misleading (3).
Nevertheless, early prediction of the
magnitude of an epidemic outbreak is
immeasurably more important than
retrospective studies. But how early is
too early? Intuitively, the cumulative
case curve will always be S-shaped
and well-described by a logistic-type
model. The essential factor is the time
when the inflection of the cumulative
case curve occurs, i.e., the moment
when a rapid increase in case numbers
1s replaced by a slower increase. Since
the inflection point, approximated by
1, (1), dictates the point in time when
the rate of increase of cumulative case
numbers reaches its maximum, the
moment marks the key turning point
when the spread of the disease starts
to decline. As long as the data include
this inflection point and a time inter-
val shortly after, the curve fitting and
predicting future case number will be
reasonably accurate.

To illustrate this point more pre-
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Figure. SARS cases, Taiwan 2003, Richards model; + = real data. A, confirmed cases; B,

estimated cases using truncated data.

cisely, the cumulative SARS case data
by onset date in Taiwan were obtained
from the SARS databank of Taiwan
Center for Disease Control. The data
cover the time from February 25,
2003, the onset date of the first con-
firmed SARS case, to June 15, 2003,
the onset date of the last confirmed
case; a total of 346 SARS cases were
confirmed during the 2003 outbreak in
Taiwan (4). The cumulative case data
are fitted to the cumulative case func-
tion S¢t) in Richards model with the
initial time ¢, = 0 being February 25
and the initial case number S, = S(0) =
1. Description of the model, as well as
the result of the parameter estimation,

1166

is shown in the online Appendix
(http://www.cdec.gov/neidod/eid/vol10
no6/03-1023 app.htm). The estimates
for the parameters are r = 0.136 (95%
confidence interval [CI] 0.121 to
0.150), K = 343.4 (95% CI 339.7 to
347.1), a=1.07 (95% CI 0.80 to1.35),
and the approximate inflection point at
t,, = 66.62 (95% CI 63.9 to 69.3) with
adjusted ? >0.998, p <0.0001 for the
goodness-of-fit of the model (Figure).
The result indicates that the inflection
point occurred on May 3, and the esti-
mate for the maximum case number K
= 343.3 is 0.8% off the actual total
case numbers.

Moreover, the case number data

are sorted by onset date. Given a
mean SARS incubation of 5 days (4-6
days) (5), the inflection point for
SARS in Taiwan could be traced back
to 5 days before May 3, namely April
28. On April 26, the first SARS
patient in Taiwan died. Starting April
28, the government implemented a
series of strict intervention measures.
including household quarantine of all
travelers from affected areas (6). In
retrospect, April 28 was indeed the
turning point of the SARS outbreak in
Taiwan.

To address making projections
during an ongoing epidemic, we used
the same dataset but used various time
intervals (all starting February 25) but
truncated at various dates around the
inflection point of May 3. The result-
ing parameter estimates are given in
the Table of the online Appendix. For
the truncated data ending on April 28
before the inflection, an unreasonable
estimate of K = 875.8 was obtained.
However, if we use the data ending on
May 5, May 10, May 15, and May 20,
we obtain estimates of K = 204.9,
253.1, 334.2, and 342.1, respectively.
These estimates improve as we move
further past the inflection time of May
3 (Figure). Moreover, the last esti-
mate, using data from February
25-May 20 only, produces a 1.1%
error from the eventual cumulative
case number of 346, with 95% CI of
321.5 to 362.6. This retrospective
exercise demonstrates that if the
cumulative case data used for predic-
tive purpose during an outbreak con-
tain information on the inflection
point and approximately 2 weeks
afterwards, the estimate for the total
case number can be obtained with
accuracy, well before the date of the
last reported case. This procedure
may be immensely useful for deciding
future public health policies although
correctly determining the true inflec-
tion point during a real ongoing epi-
demic calls for scrutiny and judicious
use of the model, as with all mathe-
matical epidemic models.
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In Reply: Our analysis of the
dynamics of reported severe acute
respiratory syndrome (SARS) clinical
cases was conducted in May 2003
during the height of the public panic
(1). Our primary goal in that study
was to predict “when the epidemic
might be brought under control if the
current intervention measures were
continued.” (1). We used the Richards
model and successfully predicted the
epidemic cessation dates in Beijing,
Hong Kong, and Singapore. Our pre-
dicted total number of SARS cases
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was close to the actual number of
cases. In addition, we estimated the
basic reproductive rate (R;) of SARS
infection, and our estimates based on
the deterministic model were similar
to those based on stochastic models
(2,3). Therefore, our analysis provid-
ed useful information on the epidemi-
ologic characteristic of SARS infec-
tions in three major Asian cities.

Hsieh et al. (4) commented that
our article did not address the effect
that specific intervention measures
might have on the dynamics of SARS
infection. Our study was not intended
to measure this. As we stated in our
article, ““the transmission mechanism
of the coronavirus that causes SARS
and the epidemiological determinants
of spread of the virus are poorly
understood.” Any models built on
these unknowns are not suitable for
assessing the effects of specific inter-
vention measures. A method suggest-
ed by Hsieh et al. (4) to merely “con-
sider a more complicated model with
variable maximum case load and
growth rate” will not answer the ques-
tion to any extent.

The retrospective analysis of
SARS case dynamics in Taiwan by
Hsieh et al. (4) found that “as long as
the data include this inflection point
and time interval shortly after, the
curve fitting and predicting future
case number will be reasonably accu-
rate.” This notion holds only if the
true inflection point is known before
an epidemic ends. The main difficulty
is how the true inflection point is cor-
rectly determined, as noted by Hsieh
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et al. (4). The time when inflection
occurs varies tremendously if truncat-
ed data of cumulative SARS case
numbers are used. To illustrate this
point, we used the cumulative number
of reported probable SARS cases in
Hong Kong, starting March 17, 2003,
but truncated at various dates, and cal-
culated the date when inflection
occurred (Table). For example, if the
data period from the onset date
(March 17, 2003) to the last case
reported (June 12, 2003) was used, the
date when inflection would occur was
estimated as March 19, 2003. If the
truncated data ending April 9, April
16, April 30, May 14, and May 28,
2003, were used, the dates when
inflection would occur were estimated
as April 2, February 7, March 3,
March 23, and April 2, 2003, respec-
tively (Table). Clearly, inflection
point dates became a moving target as
the epidemic progressed. When trun-
cated data ending April 9, April 16,
April 30, May 14, and May 28, 2003,
were used, the corresponding estimat-
ed maximum numbers of cumulative
cases (K) were 1,107, 1,907, 1,819,
1,749, and 1,733, respectively.
Estimation of K improved when the
data period used for prediction was at
least one month past the March 19
inflection point obtained from the
entire epidemic period. This analysis
highlights the difficulty in identifying
an optimal inflection point for predic-
tion purposes during an ongoing epi-
demic when only a partial cumulative
case number is available.

We fully agree with Hsieh et al. (4)

Table. Predicted inflection point and dates when inflection occurs based on truncated
data of cumulative number of reported severe acute respiratory syndrome cases in

Hong Kong

Data period (ending date) [ iy Date’ K i o
April 9, 2003 16.62 April 2, 2003 1,107 0.20 0.74
April 16, 2003 —40.79 February 7, 2003 1,907 0.07 52.11
April 30, 2003 -13.52 March 3, 2003 1,819 0.07 10.21
May 14, 2003 6.80 March 23, 2003 1,749 0.09 2.84
May 28, 2003 17.31 April 2, 2003 1,733 0.10 1.38
June 12, 2003 2.63 March 19, 2003 1,751 0.09 3.77

“t, is the inflection point of the model.
“Date refers to the date when inflection occurs.

‘K is the predicted maximum number of cumulative cases.

“ris the intrinsic growth rate.

‘o measures the extent of deviation of S -shaped dynamics from the classic logistic growth curve.

1167



Copyright of Emerging Infectious Diseases is the property of Centers for Disease
Control & Prevention (CDC) and its content may not be copied or emailed to multiple
sites or posted to a listserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.



